

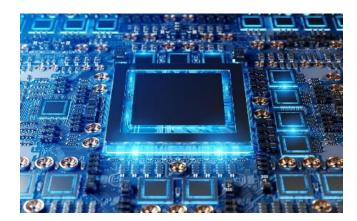


# Belarusian State University of Informatics and Radioelectronics

R&D Department BSUIR, 6, P. Brovki Str., Minsk 220013, Republic of Belarus

# Research of parameters and fabrication of integrated digital magnetic threshold sensors

## Type of collaboration


technical cooperation

## **Key words**

sensor, nanotechnology, threshold microelectronics, magnetic

#### State of IPR

Secret knowhow



#### Contacts

#### Head of research

Igor Vrublevsky PhD, Associate Professor vrublevsky@bsuir.edu.by

Technology Transfer science@bsuir.by

#### Collaboration

- Research of parameters of the sensor and development in the field of integrated digital magnetic threshold sensors controlled by an electric field.
- Conducting joint research of the magnetic field influence on the switching characteristics of the sensors.
- Conducting a series of tests of sensors and further technology development, based on the test results.





# Belarusian State University of Informatics and Radioelectronics

R&D Department BSUIR, 6, P. Brovki Str., Minsk 220013, Republic of Belarus

## **Project description**

The principle of operation of digital magnetic threshold sensors is based on the excitation of electrons located on traps in a potential well by a magnetic field. Filling electron traps in a thin dielectric layer leads to a decrease in the electrical resistance of such a layer. In turn, when the magnetic field of the threshold value is applied, the electrons acquire enough energy to leave the electron traps. As a result, the electrical resistance of such a dielectric layer increases dramatically.

The University conducted research on the influence of a magnetic field with a strength of 0.5-3 Tesla on the switching characteristics of experimental sensors.

Performance characteristics of magnetic sensors:

- information reading voltage, V, 0.5
- the ratio of sensor resistances in the high-resistance and low-resistance state 200
- resistance in the high-resistance state, kOm-100-400

The main advantages of magnetic sensors are extremely low energy consumption, high speed of reading information. The components of the magnetic sensor use a metal-nanoscale metal oxidemetal multilayer structure and are characterized by the capability to scale, long data retention time, and can meet the criteria of high integration density.

The developed non-contacting magnetic sensors can be used in various positioning systems: for positioning the piston in pneumatic cylinders, determining the position of the cartridge in machine tools, determining the speed and angular position.

# Advantages of the development

The main advantages of the developed magnetic sensors are non-volatility and long duration of information storage, low reading currents, the possibility of using integrated technologies for their manufacture, and high integration density.