

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Научно-исследовательская часть БГУИР, ул. П. Бровки, 6, Минск, 220013, Республика Беларусь

Формирование high-k диэлектриков с высокой диэлектрической проницаемостью ионно-плазменными методами для микроэлектроники в качестве подзатворного диэлектрика

Тип сотрудничества

научно-исследовательское сотрудничество

Ключевые слова

ионно-плазменный, high-k, диэлектрик, микроэлектроника

Ключевые задачи проекта:

- разработка методов ионно-плазменного формирования сверхтонких пленок диэлектриков с высокой диэлектрической проницаемостью на основе оксида гафния и исследование их электрофизических свойств,
- определение возможности использования данных пленок для улучшения характеристик КМОП структур и других изделий микроэлектроники.

Разработка устройства на базе тонкопленочных структур с использованием диэлектриков с высокой диэлектрической проницаемостью способно значительно превысить технические и эксплуатационные характеристики производимых интегральных микросхем и гармонично вписаться в современную полупроводниковую промышленность.

Контакты

Научный руководитель Дмитрий Голосов к.т.н. golosov@bsuir.by

Технологический трансфер science@bsuir.bv

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Научно-исследовательская часть БГУИР, ул. П. Бровки, 6, Минск, 220013, Республика Беларусь

Теоретическая база:

В датчиках используется прямой пьезоэффект — возникновение При переходе на технологические нормы 60 и менее нанометров необходимо использовать новые материалы с высокой диэлектрической проницаемостью, так называемые альтернативные, или high-k диэлектрики на основе оксид гафния HfO_2 ($\epsilon \approx 25$), оксид циркония ZrO_2 ($\epsilon \approx 25$), оксид титана TiO_2 ($\epsilon \approx 80$), оксид алюминия Al_2O_3 ($\epsilon \approx 10$), оксид тантала Ta_2O_5 ($\epsilon \approx 22$) и двойные оксиды.

На данный момент практическое использование пленок high-k диэлектриков в микроэлектронике сталкивается с серьезными трудностями из-за отсутствия совместимых технологий воспроизводимого получения тонких пленок high-k диэлектриков.

Для формирования пленок HfO_2 используют ряд методов, например, термическое окисление, атомно-слоевое осаждение (ALD), парофазно-химическое осаждение (CVD), импульсное лазерное нанесение, DC и BЧ распыление, золь-гель методы. При этом чаще всего из-за особенностей процессов осаждения пленки наносятся на нагретые подложки или подвергаются последующему отжигу.

Оксид гафния не обладает достаточной термической стабильностью, и проявляет тенденцию к кристаллизации при температурах 400 — 450 °C. В результате кристаллизации в структуре поликристаллических пленок формируется ряд дефектов, которые приводят к увеличению токов утечки по границам зерен. Последние результаты показывают, что диэлектрики с низкой степенью кристаллизации обладают улучшенными диэлектрическими свойствами по сравнению с сильной кристаллической фазой.

Один из способов получения аморфных диэлектриков основан на использовании процессов, которые позволяют наносить пленки при низких температурах и минимальном энергетическом воздействии на растущую пленку. Метод магнетронного распыления как раз и является низкотемпературным процессом, который позволяет наносить компонентные тонкие пленки высокого качества с управляемым стехиометрическим составом на больших площадях. Кроме того, легирование редкоземельными элементами, алюминием или кремнием позволяет модифицировать структуру пленок и получать аморфные диэлектрики, стабильные к температурным процесса.